Exercises from Atiyah-MacDonald Introduction to Commutative Algebra

Joshua Ruiter

October 16, 2019

Exercises from Atiyah-MacDonald:

- 1. (Chapter 4, page 55) 4.5, 4.10
- 2. (Chapter 6, page 78) 6.1, 6.5, 6.7, 6.8
- 3. (Chapter 8, page 92) 8.2, 8.3
- 4. (Chapter 10, page 113) 10.4, 10.9, 10.10
- 5. (Chapter 11, page 125) 11.1, 11.4

1 Chapter 4

Proposition 1.1 (Exercise 4.5). Let K be a field, and let A = K[x, y, z]. Consider the ideals

$$\mathfrak{p}_1 = (x, y)$$
 $\mathfrak{p}_2 = (x, z)$ $\mathfrak{m} = (x, y, z)$

Note that $\mathfrak{p}_1, \mathfrak{p}_2$ are prime, and \mathfrak{m} is maximal. Let $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2$. Then $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a reduced primary decomposition of \mathfrak{a} . Consequently, the associated primes of \mathfrak{a} are $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{m}$. Of these, $\mathfrak{p}_1, \mathfrak{p}_2$ are isolated, and \mathfrak{m} is embedded.

Proof. It is not too hard to see that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Clearly $\mathfrak{p}_1, \mathfrak{p}_2$ are primary because they are prime, and by Proposition 4.2 of Atiyah-MacDonald, \mathfrak{m}^2 is primary. To show that it is reduced, we need to show the following three containments fail.

$$\mathfrak{p}_1\cap\mathfrak{p}_2\not\subset\mathfrak{m}^2\qquad\mathfrak{p}_1\cap\mathfrak{m}^2\not\subset\mathfrak{p}_2\qquad\mathfrak{p}_2\cap\mathfrak{m}^2\not\subset\mathfrak{p}_1$$

In each case, we just need a single element.

$$x \in (\mathfrak{p}_1 \cap \mathfrak{p}_2) \setminus \mathfrak{m}^2$$
 $y^2 \in (\mathfrak{p}_1 \cap \mathfrak{m}^2) \setminus \mathfrak{p}_2$ $z^2 \in (\mathfrak{p}_2 \cap \mathfrak{m}^2) \setminus \mathfrak{p}_1$

Thus $\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a reduced primary decomposition of \mathfrak{a} . The associated primes are the radicals of the primes appearing in the decomposition. For $\mathfrak{p}_2, \mathfrak{p}_2$, they are equal to their own radical, but the radical of \mathfrak{m}^2 is \mathfrak{m} , so $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{m}$ are the associated primes of \mathfrak{a} . Clearly, $\mathfrak{p}_1, \mathfrak{p}_2$ are minimal, so they are the isolated primes, and \mathfrak{m} is not, so it is embedded.

Proposition 1.2 (Exercise 4.10). Let \mathfrak{p} be a prime ideal in a ring A, and let $A \to A_{\mathfrak{p}}$, $a \mapsto \frac{a}{1}$ be the canonical homomorphism, and let $S_{\mathfrak{p}}(0)$ be the kernel. Then

- 1. $S_{\mathfrak{p}}(0) \subset \sqrt{S_{\mathfrak{p}}(0)} \subset \mathfrak{p}$
- 2. If $\mathfrak{q} \subset A$ is another prime ideal such that $\mathfrak{p} \supset \mathfrak{q}$, then $S_{\mathfrak{p}}(0) \subset S_{\mathfrak{q}}(0)$.
- 3. $\sqrt{S_{\mathfrak{p}}(0)} = \mathfrak{p}$ if and only if \mathfrak{p} is a minimal prime of A.
- 4. Let D(A) be the prime ideals of A such that there exists $a \in A$ with \mathfrak{p} minimal among primes containing $\mathrm{Ann}(a)$. Then

$$\bigcap_{\mathfrak{p}\in D(A)} S_{\mathfrak{p}}(0) = 0$$

(See Exercise 4.8 of Atiyah-MacDonald for other properties of D(A).)

Proof. (1) The inclusion $I \subset \sqrt{I}$ is true for any ideal. For the second inclusion, we start by observing that

$$S_{\mathfrak{p}}(0) = \left\{ a \in A : \frac{a}{1} = \frac{0}{1} \text{ in } A_{\mathfrak{p}} \right\} = \left\{ a \in A : \exists s \in A \setminus \mathfrak{p} \text{ such that } sa = 0 \text{ in } A \right\} = \bigcup_{s \in A \setminus \mathfrak{p}} \operatorname{Ann}(s)$$

$$\sqrt{S_{\mathfrak{p}}(0)} = \left\{ x \in A : \exists s \in A \setminus \mathfrak{p} \text{ and } n > 0 \text{ such that } sx^{n} = 0 \right\} = \bigcup_{s \in A \setminus \mathfrak{p}} \sqrt{\operatorname{Ann}(s)}$$

If $x \in \sqrt{S_{\mathfrak{p}}(0)}$, we have $sx^n = 0 \in \mathfrak{p}$ with $s \in A \setminus \mathfrak{p}$, and since \mathfrak{p} is prime, $x^n \in \mathfrak{p}$. Then again by primality (and a mild induction), $x \in \mathfrak{p}$.

- (2) Suppose $\mathfrak{q} \subset \mathfrak{p}$. Let $a \in S_{\mathfrak{p}}(0)$, so there exists $s \in A \setminus \mathfrak{p}$ with sa = 0. Since $\mathfrak{q} \subset \mathfrak{p}$, $A \setminus \mathfrak{p} \subset A \setminus \mathfrak{q}$, so $s \in A \setminus \mathfrak{q}$, so $a \in S_{\mathfrak{q}}(0)$. Thus $S_{\mathfrak{p}}(0) \subset S_{\mathfrak{q}}(0)$.
- (3) Suppose $\sqrt{S_{\mathfrak{p}}(0)} = \mathfrak{p}$. We want to show that \mathfrak{p} is a minimal prime, so suppose $\mathfrak{q} \subset \mathfrak{p}$ for some prime \mathfrak{q} . By (2), $S_{\mathfrak{p}}(0) \subset S_{\mathfrak{q}}(0)$, so $\sqrt{S_{\mathfrak{p}}(0)} \subset \sqrt{S_q(0)}$. Putting this together with (1), we obtain

$$\mathfrak{p}=\sqrt{S_{\mathfrak{p}}(0)}\subset\sqrt{S_{\mathfrak{q}}(0)}\subset\mathfrak{q}$$

Hence $\mathfrak{p} = \mathfrak{q}$, so \mathfrak{p} is minimal. Conversely, suppose \mathfrak{p} is a minimal prime. By the ideal correspondence with $A_{\mathfrak{p}}$, this is equivalent to saying that $A_{\mathfrak{p}}$ has a unique prime, namely $\mathfrak{p}A_{\mathfrak{p}}$. Thus the nilradical of $A_{\mathfrak{p}}$ is precisely $\mathfrak{p}A_{\mathfrak{p}}$. That is to say, for $x \in \mathfrak{p}$, there exists n so that $\left(\frac{x}{1}\right)^n = 0$ in $A_{\mathfrak{p}}$, which is to say that $x^n \in S_{\mathfrak{p}}(0)$. Thus $x \in \sqrt{S_{\mathfrak{p}}(0)}$. We have shown that $\mathfrak{p} \subset \sqrt{S_{\mathfrak{p}}(0)}$, and the reverse inclusion is shown in (1), so we get the desired equality.

(4) Let $x \in A, x \neq 0$. Then choose a prime \mathfrak{p} which is minimal among primes containing $\mathrm{Ann}(x)$. Then

$$S_{\mathfrak{p}}(0) = \{ a \in A : \exists s \in A \setminus \mathfrak{p} : sa = 0 \}$$

Since $\operatorname{Ann}(x) \subset \mathfrak{p}$, $\operatorname{Ann}(x) \cap A \setminus \mathfrak{p} = \emptyset$. That is, $x \notin S_{\mathfrak{p}}(0)$. Thus

$$x \not\in \bigcap_{\mathfrak{p} \in D(a)} S_{\mathfrak{p}}(0)$$

so the intersection contains no nonzero elements.

2 Chapter 6

Lemma 2.1 (for Exercise 6.1). Let A be a ring, let M be an A-module, and let $\phi \in \text{End}_A(M)$.

- 1. Suppose ϕ is surjective. Then ϕ is injective if and only if $\ker \phi^n = \ker \phi^{n+1}$ for some n.
- 2. Suppose ϕ is injective. Then ϕ is surjective if and only if $\operatorname{coker} \phi^n = \operatorname{coker} \phi^{n+1}$ for some n.

Proof. (1) The forward implication is obvious and does not even require the surjectivity hypothesis. For the converse, consider the following commutative diagram with exact rows, with $n \ge 1$.

$$0 \longrightarrow \ker \phi^{n} \longleftrightarrow M \xrightarrow{\phi^{n}} M \longrightarrow 0$$

$$\downarrow^{\iota_{n}} \qquad \downarrow^{\operatorname{Id}_{M}} \qquad \downarrow^{\phi}$$

$$0 \longrightarrow \ker \phi^{n+1} \longleftrightarrow M \xrightarrow{\phi^{n+1}} M \longrightarrow 0$$

By the Snake Lemma, there is an exact sequence

$$0 = \ker \operatorname{Id}_M \to \ker \phi \to \operatorname{coker} \iota_n \to \operatorname{coker} \operatorname{Id}_M = 0$$

Thus $\ker \phi \cong \operatorname{coker} \iota_n$. If $\ker \phi^n = \ker \phi^{n+1}$ for some n, then ι_n is surjective for some n, so it has trivial cokernel, so $\ker \phi = 0$.

(2) The forward implication is obvious and does not even require the injectivity hypothesis. For the converse, consider the following commutatie diagram with exact rows, with $n \geq 1$.

$$0 \longrightarrow M \xrightarrow{\phi^{n+1}} M \longrightarrow \operatorname{coker} \phi^{n+1} \longrightarrow 0$$

$$\downarrow^{\phi} \qquad \downarrow^{\operatorname{Id}_{M}} \qquad \downarrow^{\pi_{n}}$$

$$0 \longrightarrow M \xrightarrow{\phi^{n}} M \longrightarrow \operatorname{coker} \phi^{n} \longrightarrow 0$$

where π_n is the map $\overline{x} \mapsto \overline{x}$ (one checks quickly that this is well-defined). By the Snake Lemma, there is an exact sequence

$$0 = \ker \operatorname{Id}_M \to \ker \pi_n \to \operatorname{coker} \phi \to \operatorname{coker} \operatorname{Id}_M = 0$$

thus $\ker \pi_n \cong \operatorname{coker} \phi$. If $\operatorname{coker} \phi^{n+1} = \operatorname{coker} \phi^n$ for some n, then π_n is injective for some n, so it has trivial kernel, so $\operatorname{coker} \phi = 0$.

Proposition 2.2 (Exercise 6.1). Let A be a ring, let M be an A-module, and let $\phi \in \operatorname{End}_A(M)$.

- 1. If M is a Noetherian A-module and ϕ is surjective, then ϕ is also injective.
- 2. If M is an Artinian A-module and ϕ is injective, then ϕ is also surjective.

Proof. (1) Consider the chain of A-submodules of M,

$$0 = \ker \phi^0 \subset \ker \phi^1 \subset \ker \phi^2 \subset \ker \phi^3 \subset \cdots$$

Since M is Noetherian, this stabilizes and $\ker \phi^n = \ker \phi^{n+1}$ for some n. Then by part (1) of Lemma 2.1, ϕ is injective.

(2) Consider the chain of A-submodules of M,

$$\operatorname{coker} \phi \supset \operatorname{coker} \phi^2 \supset \operatorname{coker} \phi^3 \supset \cdots$$

Since M is Artinian, this stabilizes and $\operatorname{coker} \phi^n = \operatorname{coker} \phi^{n+1}$ for some n. Then by part (2) of Lemma 2.1, ϕ is surjective.

Definition 2.1. A topological space X is **Noetherian** if the open subsets of X satisfy the ascending chain condition. That is, if we have open subsets of X,

$$U_1 \subset U_2 \subset U_3 \subset \cdots$$

then eventually this stabilizes, $U_n = U_{n+1} = \cdots$. Equivalently, the closed subsets of X satisfy the descending chain condition.

Proposition 2.3 (Exercise 6.5). Let X be a Noetherian topological space. Then

- 1. Every subspace of X is Noetherian.
- 2. X is quasi-compact (every open cover has a finite subcover).
- 3. Every subspace of X is quasi-compact.

Proof. (1) Let $A \subset X$ be a subset, endowed with the subspace topology, and let

$$U_1 \subset U_2 \subset U_3 \subset \cdots$$

be an ascending chain of open subsets of A. By definition of the subspace topology, $U_i = A \cap V_i$ for some open subsets $V_i \subset X$. Define

$$V_n' = \bigcup_{i=1}^n V_i$$

Then

$$V_1' \subset V_2' \subset V_3' \subset \cdots$$

is an ascending chain of open subsets of X, so by the Noetherian property it stabilizes, so for some n, we have

$$\bigcup_{i=1}^{n} V_{i} = \bigcup_{i=1}^{n+1} V_{i} \qquad \text{equivalently,} \qquad V_{n+1} \subset \bigcup_{i=1}^{n} V_{i}$$

From this, we get

$$U_{n+1} = V_{n+1} \cap A \subset \left(\bigcup_{i=1}^{n} V_i\right) \cap A = \bigcup_{i=1}^{n} (V_i \cap A) = \bigcup_{i=1}^{n} U_i = U_n$$

with the last equality following from the original chain. Thus $U_{n+1} \subset U_n$, and since the other inclusion comes from the chain, $U_{n+1} = U_n$, and the chain of open sets in A stabilizes. Hence A is Noetherian.

(2) We prove the contrapositive, namely, that if X is not quasi-compact, then it is not Noetherian. If X is not quasi-compact, there is an open cover $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ which has no finite subcover. We will construct a non-stabilizing sequence of open subsets

$$V_1 \subset V_2 \subset V_3 \subset \cdots$$

Choose some $V_1 = U_{\alpha_1} \in \mathcal{U}$ arbitrarily. Since $V_1 \neq X$ (since then it would be a finite subcover), there exists $x_2 \in X \setminus V_1$, and since \mathcal{U} is a cover, there exists $U_{\alpha_2} \in \mathcal{U}$ with $x_2 \in U_{\alpha_2}$. Then set $V_2 = V_1 \cup U_{\alpha_2}$. Note that $x_2 \in V_2 \setminus V_1$, so $V_1 \subsetneq V_2$.

We define V_{i+1} inductively via this process. At each step, choose $x_{i+1} \in X \setminus V_i$, then choose $U_{\alpha_{i+1}} \in \mathcal{U}$ with $x_{i+1} \in U_{\alpha_{i+1}}$, then set $V_{i+1} = V_i \cup U_{\alpha_{i+1}}$. By construction V_{i+1} is open, and $V_i \subsetneq V_{i+1}$. At each stage, such x_{i+1} exists because if it did not, then

$$\bigcup_{i=1}^{n} U_i = X$$

would be a finite subcover of \mathcal{U} . Thus we obtain a non-stabilizing sequence of open subsets, so X is not Noetherian. Consequently, every Noetherian space is quasi-compact.

(3) Immediate consequence of (1) and (2).

Definition 2.2. A topological space X is **irreducible** if it cannot be written as a union of two proper closed subsets (they need not be disjoint). An **irreducible component** of a topological space is a maximal irreducible subset. (Note that the unlike connected components, the irreducible components may overlap.)

Lemma 2.4 (for Exercise 6.7). The closure (in X) of an irreducible set $A \subset X$ is irreducible. Consequently, an irreducible component (of X) is closed (in X).

Proof. We prove the first statement first. Let $A \subset X$ be irreducible, and let \overline{A} be the closure of A (in X). Suppose \overline{A} is reducible, so

$$\overline{A} = B \cup C$$

with B, C proper closed subsets in the subspace topology on \overline{A} . By definition of the subspace topology, there are closed subsets B', C' of X such that $B = B' \cap A, C = C' \cap A$. Since B, C are proper subsets of \overline{A} , neither of B', C' contains \overline{A} .

If $A \subset B'$ then $\overline{A} \subset \overline{B}' = B'$, which is a contradiction, so $A \not\subset B'$. Similarly, $A \not\subset C'$. Thus

$$A = (B' \cap A) \cup (C' \cap A)$$

is a decomposition of A into a union of two proper closed subset (closed in the subspace topology on A), which contradicts A being irreducible. Thus \overline{A} is irreducible.

For the second statement, suppose A is an irreducible component. By the above, \overline{A} is also irreducible, and of course $A \subset \overline{A}$, so by maximality of A we have $A = \overline{A}$, hence A is closed.

Proposition 2.5 (Exercise 6.7). Let X be a Noetherian topological space. Then X is a finite union of irreducible closed subspaces. Consequently, the set of irreducible components of a Noetherian space is finite.

Proof. Consider

 $\Sigma = \{A \subset X \text{ is closed} : A \text{ is not a finite union of irreducible closed subspaces}\}$

We claim that Σ is empty. Suppose $A \in \Sigma$. Then A is not irreducible, so it can be written as $A = A_1 \cup A_2$, where A_1, A_2 are closed proper subsets. At least one of them must belong to Σ , since if A_1, A_2 are both finite unions of irreducible closed subspaces, and then A is also.

Applying this again to $A_1 \in \Sigma$, we obtain a proper subset of A_1 which belongs to Σ . Applying this process inductively, we obtain a descending chain of proper inclusions of closed subsets of X which never terminates. Since X is Noetherian, this is impossible, so Σ must be empty. In particular, X is not in Σ , so X is a finite union of irreducible closed subspaces. So we write X as

$$X = \bigcup_{i=1}^{n} A_i$$

with A_i irreducible and closed. Then each A_i is contained in some maximal irreducible subset B_i . (Note that B_i may not be unique, and even if all the A_i are distinct, some of the B_i may be the same.) Then

$$X = \bigcup_{i=1}^{n} B_i$$

We claim that the collection $\{B_i\}$ must contain all maximal irreducible subsets. Suppose not, so there is a maximal irreducible subset $C \subset X$ which is not equal to any B_i . Then we can write C as

$$C = \bigcup_{i=1}^{n} (B_i \cap C)$$

By Lemma 2.4, B_i , C are closed (in X), so $B_i \cap C$ is closed (in X), and since $B_i \neq C$ for any $i, B_i \cap C \neq C$. Thus we have written C as a union of proper closed subsets, contradicting C being irreducible.

Proposition 2.6 (Exercise 6.8). Let A be a ring. Then spec A is a Noetherian topological space if and only if the ascending chain condition holds for the set of radical ideals of A. In particular, if A is Noetherian (as a ring), then spec A is Noetherian (as a topological space).

Proof. Recall that there is an inclusion reversing bijection

 $V: \{ \text{radical ideals of } A \} \leftrightarrow \{ \text{closed subsets of spec } A \} \qquad V(I) = \{ \mathfrak{p} \in \operatorname{spec} A : I \subset \mathfrak{p} \}$

This induces a "stabilization-preserving" bijection between ascending chains of radical ideals of A and descending chains of closed subsets of spec A.

$$I_1 \subset I_2 \subset I_3 \subset \cdots \longleftrightarrow V(I_1) \supset V(I_2) \supset V(I_3) \supset \cdots$$

Thus radical ideals of A satisfy the ascending chain condition if and only if spec A is Noetherian.

3 Chapter 8

Lemma 3.1 (for Exercise 8.2). A discrete Noetherian topological space X is finite.

Proof. Choose distinct points $x_1, x_2, \ldots \in X$. Then we have an ascending chain of open subsets

$$\{x_1\} \subset \{x_1, x_2\} \subset \cdots$$

which stabilizes by the Noetherian property. Thus

$$\{x_1, \dots, x_n\} = \{x_1, \dots, x_N\}$$

for any $N \in \mathbb{N}$, which is to say, X has only finitely many points.

Definition 3.1. Let A be a ring and $a \in A$. We define $X_a = \{ \mathfrak{p} \in \operatorname{spec} A : a \notin \mathfrak{p} \}$. Note that the sets X_a form a basis of open sets for the Zariski topology on spec A.

Lemma 3.2 (for Exercise 8.2). Let A be a ring and let $\mathfrak{q} \in \operatorname{spec} A$. Then $\{\mathfrak{q}\} \subset \operatorname{spec} A$ is closed if and only if \mathfrak{q} is a maximal ideal.

Proof. Let \mathfrak{q} be a maximal ideal. Then

$$V(\mathfrak{q}) = {\mathfrak{p} \in \operatorname{spec} A : \mathfrak{q} \subset \mathfrak{p}} = {\mathfrak{q}}$$

is closed. Conversely, suppose $\{\mathfrak{q}\}$ is closed, and let \mathfrak{m} be a maximal ideal containing \mathfrak{q} . Since $\{\mathfrak{q}\}$ is closed and $\mathfrak{m} \in \operatorname{spec} A \setminus \{\mathfrak{q}\}$, there is a basis element X_a with $\mathfrak{m} \in X_a$ and $\mathfrak{q} \notin X_a$. Then $a \in \mathfrak{q} \setminus \mathfrak{m}$, which contradicts $\mathfrak{q} \subset \mathfrak{m}$. Thus \mathfrak{q} is maximal.

Proposition 3.3 (Exercise 8.2). Let A be a Noetherian ring. The following are equivalent.

- 1. A is Artinian.
- 2. spec A is discrete and finite.
- 3. spec A is discrete.

Proof. (3) \implies (2) Since A is Noetherian, spec A is Noetherian by Proposition 2.6, and then this follows from Lemma 3.1.

 $(2) \implies (1)$ Since spec A is discrete, every singleton set is closed, so every prime ideal of A is maximal by Lemma 3.2. That is, dim A = 0. Then since A is also Noetherian, by Theorem 8.5 of Atiyah-MacDonald, A is Artinian.

(1) \Longrightarrow (3) Since A is Artinian, every prime ideal is maximal by Proposition 8.1 of Atiyah-MacDonald, so by Lemma 3.2, every singleton set of spec A is closed. By Proposition 8.3 of Atiyah-MacDonald, spec A has only finitely many points. Then every singleton set is also open, since it can be written as a finite intersection of open sets. Thus spec A is discrete.

Remark 3.4. Let k be a field, and let A be a (unital) k-algebra. Then there is a natural embedding $k \hookrightarrow A, x \mapsto 1x$. Let M be an A-module. Then M has a natural structure of a k-module (aka k-vector space) by restricting the action of A to the image of k in A.

Proposition 3.5 (Exercise 8.3). Let K be a field and let A be a finitely generated K-algebra. The following are equivalent.

- 1. A is Artinian.
- 2. A is finitely generated as a K-module.

Proof. (2) \implies (1) In this case, A is a finite dimensional K-vector space, so ideals are vector subspaces. Then a descending chain of ideals eventually stabilizes, since the dimension cannot decrease forever. Thus A is Artinian.

(1) \Longrightarrow (2) By Theorem 8.7 of Atiyah-MacDonald (every Artinian ring is a finite direct sum of local Artinian rings), it suffices to prove this in the case where A is local, so we assume A is local with maximal ideal \mathfrak{m} . Let $k = A/\mathfrak{m}$ be the residue field. By Proposition 8.6 of Atiyah-MacDonald, we have the following descending chain of ideal of A.

$$A\supset\mathfrak{m}\supset\mathfrak{m}^2\supset\cdots\supset\mathfrak{m}^{n-1}\supset\mathfrak{m}^n=0$$

Each quotient $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is a k-vector space. Since A is Noetherian, \mathfrak{m}^i is a finitely generated A-module, so $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is finite dimensional over k. By Corollary 7.10 of Atiyah-MacDonald, k is a finite extension of K, so we can view $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ as a K-vector space, of dimension

$$\dim_K \mathfrak{m}^i/\mathfrak{m}^{i+1} = (\dim_K k) \left(\dim_k \mathfrak{m}^i/\mathfrak{m}^{i+1}\right) < \infty$$

Viewing the chain above as a chain of K-vector spaces, we showed that each successive quotient is finite dimensional, so all the terms must be finite dimensional. Thus A is a finite dimensional K-vector space, that is, A is finitely generated as an A-module.

4 Chapter 10

Proposition 4.1 (Exercise 10.4). Let A be a Noetherian ring, and let $\mathfrak{a} \subset A$ be an ideal. Let \widehat{A} be the \mathfrak{a} -adic completion. Let $A \to \widehat{A}$, $x \mapsto \widehat{x}$ be the canonical homomorphism. If x is not a zero divisor in \widehat{A} .

Proof. Suppose $x \in A$ is not a zero divisior. Then the following sequence is exact.

$$0 \longrightarrow A \stackrel{x}{\longrightarrow} A$$

Since the inverse limit functor is exact in this case (Proposition 10.12 of Atiyah-MacDonald), the sequence

$$0 \longrightarrow \widehat{A} \stackrel{\widehat{x}}{\longrightarrow} \widehat{A}$$

is exact. Thus \hat{x} is not a zero divisor.

Remark 4.2. As an immediate corollary of the previous proposition, if A is a Noetherian domain, then the image of A in \widehat{A} is an integral domain. However, $A \to \widehat{A}$ is rarely surjective, so this does not imply that \widehat{A} is a domain. In fact, there are counterexamples where the completion of a domain has zero divisors.

Proposition 4.3 (Exercise 10.9, Hensel's Lemma). Let (A, \mathfrak{m}) be a local ring with residue field $k = A/\mathfrak{m}$, and suppose A is \mathfrak{m} -adically complete. For $f \in A[x]$, let $\widetilde{f} \in k[x]$ denote the reduction mod \mathfrak{m} . If $f \in A[x]$ is monic and there exist coprime monic polynomials \widetilde{g} , $\widetilde{h} \in k[x]$ so that $\widetilde{f} = \widetilde{g}\widetilde{h}$, then there exist lifts $g, h \in A[x]$ so that f = gh.

Proof. Proof omitted. \Box

Lemma 4.4. The lifts $g, h \in A[x]$ obtained in Hensel's lemma have leading coefficient which is a unit, and satisfy deg $g = \deg \widetilde{g}$ and deg $h = \deg \widetilde{h}$.

Proof. Since f = gh is monic, the leading coefficients of g, h must be units of A, so they lie outside \mathfrak{m} . That is, the highest degree terms survive (are nonzero) after reduction mod \mathfrak{m} , so g cannot have higher degree terms that g, hence $\deg g \leq \deg \widetilde{g}$. Of course, reducing mod \mathfrak{m} cannot add higher degree terms, so $\deg g = \deg \widetilde{g}$. Same goes for h.

Proposition 4.5 (Exercise 10.10). Let (A, \mathfrak{m}) be a local ring with residue field $k = A/\mathfrak{m}$, and suppose A is \mathfrak{m} -adically complete. For $f \in A[x]$, let $\widetilde{f} \in k[x]$ denote the reduction mod \mathfrak{m} . Let $f \in A[x]$ be monic.

- 1. If \widetilde{f} has a simple root $\alpha \in k$, then f has a simple root $a \in A$ such that $\alpha = \overline{a} \in k$. (Where $\overline{a} = a \mod \mathfrak{m}$).
- 2. 2 is a square in the ring of 7-adic integers.
- 3. Let K be a field, and let $f \in K[x,y]$. There exists a formal power series

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

with $a_i \in K$, such that f(x, y(x)) = 0. (We interpret this as an "analytic branch" of the curve f(x, y) = 0 through the point $(0, a_0)$.)

Proof. (1) Suppose α is a simple root of $\widehat{f} \in k[x]$, so we have a factorization of $\widetilde{f}(x)$ as

$$\widetilde{f}(x) = \widetilde{g}(x)\widetilde{h}(x) = (x - \alpha)\widetilde{h}(x)$$

for some $\widetilde{h}(x) \in k[x]$ which is coprime to $\widetilde{g}(x) = (x - \alpha)$. By Hensel's Lemma, this factorization lifts to

$$f(x) = g(x)h(x)$$

for some $g, h \in A[x]$. By Lemma 4.4, g is linear with leading coefficient a unit, so we may write it as

$$g(x) = ux - b$$

for some $u, b \in A$, with u a unit. Set $a = u^{-1}b$, then

$$g(a) = u(u^{-1}b) - b = 0$$

Let $\overline{a} = a \mod \mathfrak{m} \in A/\mathfrak{m}$. Reducing the previous equation mod \mathfrak{m} gives $\widetilde{g}(\overline{a}) = 0$, thus

$$\widetilde{g}(\overline{a}) = \overline{a} - \alpha = 0 \in k$$

so $\alpha = \overline{a} \in k$.

(2) and (3) I don't know how to prove these.

5 Chapter 11

Definition 5.1. Let k be an algebraically closed field, and let $f \in k[x_1, \ldots, x_n]$. A point P on the variety f(x) = 0 is **nonsingular** if not all the partial derivatives $\frac{\partial f}{\partial x_i}$ vanish at P.

Proposition 5.1 (Exercise 11.1). Let k be an algebraically closed field, and let $f \in k[x_1, \ldots, x_n]$. Let $P = (a_1, \ldots, a_n) \in \mathbb{A}^n_k$ such that f(P) = 0. Let $A = k[x_1, \ldots, x_n]/(f)$, and let $\mathfrak{m} \subset A$ be the maximal ideal $(x_1 - a_1, \ldots, x_n - a_n)$ corresponding to P. Then P is nonsingular if and only if $A_{\mathfrak{m}}$ is a regular local ring.

Proof. I don't know how to prove this.

Lemma 5.2 (for Exercise 11.4). Let k be a field and let $A = k[x_1, x_2, x_3, \ldots]$ be the polynomial ring in countably many variables. For any integers m_1, \ldots, m_n , then ideal

$$\mathfrak{p} = (x_{m_1}, \dots, x_{m_n})$$

is prime.

Proof. Consider the ring homomorphism

$$A \to k[x_{m_1}, \dots, x_{m_n}]$$

which sends variables x_i for $i \notin \{m_1, \ldots, m_n\}$ to 1. By Nullstellensatz,

$$\mathfrak{p}'=(x_{m_1},\ldots,x_{m_n})\subset k[x_{m_1},\ldots,x_{m_n}]$$

is maximal, hence prime. The preimage in A is \mathfrak{p} , so \mathfrak{p} is prime.

Proposition 5.3 (Exercise 11.4, example of Noetherian domain of infinite Krull dimension). Let k be a field and let $A = k[x_1, x_2, \ldots]$ be the polynomial ring in countably many variables. Let m_1, m_2, \ldots be an increasing sequence of positive integers such that

$$m_{i+1} - m_i > m_i - m_{i-1} \qquad \forall i \ge 2$$

Let

$$\mathfrak{p}_i = (x_{m_i+1}, \dots, x_{m_{i+1}}) \qquad \forall i \ge 1$$

and let

$$S = A \setminus \bigcup_{i=1}^{\infty} \mathfrak{p}_i$$

Then

- 1. Any ideal of A generated by a finite set of variables $\{x_{i_j} : 1 \leq j \leq n\}$ is prime. In particular, each \mathfrak{p}_i is prime.
- 2. For any ring, the complement of union of prime ideals is a multiplicative subset. In particular, S is multiplicative.
- 3. $S^{-1}A$ is Noetherian.
- 4. $S^{-1}\mathfrak{p}_i$ has height at least $m_{i+1}-m_i$.
- 5. dim $S^{-1}A = \infty$.

Proof. First, we just write down a more understandable formulation of the hypotheses. We have a sequence of integers

$$m_1 < m_1 + 1 < m_1 + 2 < \dots < m_2 < m_2 + 1 < m_2 + 2 < \dots < m_3 < \dots$$

The condition $m_{i+1} - m_i > m_i - m_{i-1}$ says that the size of the gaps are increasing. The ideals \mathfrak{p}_i are generated by variables with indices from a subsequence of this, and no two \mathfrak{p}_i have overlapping generators, the only variables not used as generators of some \mathfrak{p}_i are $x_1, x_2, \ldots, x_{m_1}$.

(1) Consider the ring homomorphism

$$A \to k[x_{i_1}, \dots, x_{i_n}]$$

which sends variables x_{ℓ} for $\ell \notin \{x_{i_j}\}$ to 1. By Hilbert's Nullstellensatz,

$$\mathfrak{p}' = (x_{i_1}, \dots, x_{i_n}) \subset k[x_{i_1}, \dots, x_{i_n}]$$

is maximal, hence prime. The preimage in A is \mathfrak{p} , so \mathfrak{p} is prime.

(2) Let R be any ring with prime ideals \mathfrak{p}_i for $i \in I$ (we make no assumptions about the cardinality of I) and let

$$S = R \setminus \bigcup_{i \in I} \mathfrak{p}_i$$

Let $x, y \in S$. If $xy \notin S$, then $xy \in \mathfrak{p}_i$ for some prime \mathfrak{p}_i , so by primality one of $x, y \in \mathfrak{p}_i$. But this contradicts $x, y \in S$, so we conclude $xy \in S$.

- (3) I don't know how to prove this.
- (4) The the following prime ideal chain in A has length $m_{i+1} m_i$.

$$(x_{m_{i+1}}) \subset (x_{m_{i+1}}, x_{m_{i+2}}) \subset \cdots \subset \mathfrak{p}_i$$

After localization, this remains a chain of prime ideals of the same height, so the height of $S^{-1}\mathfrak{p}_i$ is bounded below by $m_{i+1}-m_i$.

(5) Recall that dim $S^{-1}A$ is the supremum of lengths of chains of prime ideals. By (4), $S^{-1}A$ has a prime of height at least $m_{i+1} - m_i$ for any $i \geq 1$. Because of the hypothesis $m_{i+1} - m_i > m_i - m_{i-1}$, these heights get arbitrarily large, so $S^{-1}A$ has prime chains of arbitrarily long length. Thus dim $S^{-1}A = \infty$.