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1 Chapter 4

Proposition 1.1 (Exercise 4.5). Let K be a field, and let A = K[x, y, z]. Consider the ideals

p1 = (x, y) p2 = (x, z) m = (x, y, z)

Note that p1, p2 are prime, and m is maximal. Let a = p1p2. Then a = p1 ∩ p2 ∩ m2 is a
reduced primary decomposition of a. Consequently, the associated primes of a are p1, p2,m.
Of these, p1, p2 are isolated, and m is embedded.

Proof. It is not too hard to see that a = p1 ∩ p2 ∩ m2. Clearly p1, p2 are primary because
they are prime, and by Proposition 4.2 of Atiyah-MacDonald, m2 is primary. To show that
it is reduced, we need to show the following three containments fail.

p1 ∩ p2 6⊂ m2 p1 ∩m2 6⊂ p2 p2 ∩m2 6⊂ p1

In each case, we just need a single element.

x ∈ (p1 ∩ p2) \m2 y2 ∈ (p1 ∩m2) \ p2 z2 ∈ (p2 ∩m2) \ p1

Thus p1 ∩ p2 ∩ m2 is a reduced primary decomposition of a. The associated primes are the
radicals of the primes appearing in the decomposition. For p2, p2, they are equal to their
own radical, but the radical of m2 is m, so p1, p2,m are the associated primes of a. Clearly,
p1, p2 are minimal, so they are the isolated primes, and m is not, so it is embedded.
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Proposition 1.2 (Exercise 4.10). Let p be a prime ideal in a ring A, and let A→ Ap, a 7→ a
1

be the canonical homomorphism, and let Sp(0) be the kernel. Then

1. Sp(0) ⊂
√
Sp(0) ⊂ p

2. If q ⊂ A is another prime ideal such that p ⊃ q, then Sp(0) ⊂ Sq(0).

3.
√
Sp(0) = p if and only if p is a minimal prime of A.

4. Let D(A) be the prime ideals of A such that there exists a ∈ A with p minimal among
primes containing Ann(a). Then ⋂

p∈D(A)

Sp(0) = 0

(See Exercise 4.8 of Atiyah-MacDonald for other properties of D(A).)

Proof. (1) The inclusion I ⊂
√
I is true for any ideal. For the second inclusion, we start by

observing that

Sp(0) =

{
a ∈ A :

a

1
=

0

1
in Ap

}
= {a ∈ A : ∃s ∈ A \ p such that sa = 0 in A} =

⋃
s∈A\p

Ann(s)

√
Sp(0) = {x ∈ A : ∃s ∈ A \ p and n > 0 such that sxn = 0} =

⋃
s∈A\p

√
Ann(s)

If x ∈
√
Sp(0), we have sxn = 0 ∈ p with s ∈ A\p, and since p is prime, xn ∈ p. Then again

by primality (and a mild induction), x ∈ p.
(2) Suppose q ⊂ p. Let a ∈ Sp(0), so there exists s ∈ A \ p with sa = 0. Since q ⊂ p,

A \ p ⊂ A \ q, so s ∈ A \ q, so a ∈ Sq(0). Thus Sp(0) ⊂ Sq(0).
(3) Suppose

√
Sp(0) = p. We want to show that p is a minimal prime, so suppose q ⊂ p

for some prime q. By (2), Sp(0) ⊂ Sq(0), so
√
Sp(0) ⊂

√
Sq(0). Putting this together with

(1), we obtain

p =
√
Sp(0) ⊂

√
Sq(0) ⊂ q

Hence p = q, so p is minimal. Conversely, suppose p is a minimal prime. By the ideal
correspondence with Ap, this is equivalent to saying that Ap has a unique prime, namely
pAp. Thus the nilradical of Ap is precisely pAp. That is to say, for x ∈ p, there exists n so
that

(
x
1

)n
= 0 in Ap, which is to say that xn ∈ Sp(0). Thus x ∈

√
Sp(0). We have shown

that p ⊂
√
Sp(0), and the reverse inclusion is shown in (1), so we get the desired equality.

(4) Let x ∈ A, x 6= 0. Then choose a prime p which is minimal among primes containing
Ann(x). Then

Sp(0) = {a ∈ A : ∃s ∈ A \ p : sa = 0}
Since Ann(x) ⊂ p, Ann(x) ∩ A \ p = ∅. That is, x 6∈ Sp(0). Thus

x 6∈
⋂

p∈D(a)

Sp(0)

so the intersection contains no nonzero elements.
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2 Chapter 6

Lemma 2.1 (for Exercise 6.1). Let A be a ring, let M be an A-module, and let φ ∈ EndA(M).

1. Suppose φ is surjective. Then φ is injective if and only if kerφn = kerφn+1 for some
n.

2. Suppose φ is injective. Then φ is surjective if and only if cokerφn = cokerφn+1 for
some n.

Proof. (1) The forward implication is obvious and does not even require the surjectivity
hypothesis. For the converse, consider the following commutative diagram with exact rows,
with n ≥ 1.

0 kerφn M M 0

0 kerφn+1 M M 0

ιn IdM

φn

φ

φn+1

By the Snake Lemma, there is an exact sequence

0 = ker IdM → kerφ→ coker ιn → coker IdM = 0

Thus kerφ ∼= coker ιn. If kerφn = kerφn+1 for some n, then ιn is surjective for some n, so it
has trivial cokernel, so kerφ = 0.

(2) The forward implication is obvious and does not even require the injectivity hypoth-
esis. For the converse, consider the following commutatie diagram with exact rows, with
n ≥ 1.

0 M M cokerφn+1 0

0 M M cokerφn 0

φn+1

φ IdM πn

φn

where πn is the map x 7→ x (one checks quickly that this is well-defined). By the Snake
Lemma, there is an exact sequence

0 = ker IdM → kerπn → cokerφ→ coker IdM = 0

thus kerπn ∼= cokerφ. If cokerφn+1 = cokerφn for some n, then πn is injective for some n,
so it has trivial kernel, so cokerφ = 0.

Proposition 2.2 (Exercise 6.1). Let A be a ring, let M be an A-module, and let φ ∈
EndA(M).

1. If M is a Noetherian A-module and φ is surjective, then φ is also injective.

2. If M is an Artinian A-module and φ is injective, then φ is also surjective.
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Proof. (1) Consider the chain of A-submodules of M ,

0 = kerφ0 ⊂ kerφ1 ⊂ kerφ2 ⊂ kerφ3 ⊂ · · ·

Since M is Noetherian, this stabilizes and kerφn = kerφn+1 for some n. Then by part (1) of
Lemma 2.1, φ is injective.

(2) Consider the chain of A-submodules of M ,

cokerφ ⊃ cokerφ2 ⊃ cokerφ3 ⊃ · · ·

Since M is Artinian, this stabilizes and cokerφn = cokerφn+1 for some n. Then by part (2)
of Lemma 2.1, φ is surjective.

Definition 2.1. A topological space X is Noetherian if the open subsets of X satisfy the
ascending chain condition. That is, if we have open subsets of X,

U1 ⊂ U2 ⊂ U3 ⊂ · · ·

then eventually this stabilizes, Un = Un+1 = · · · . Equivalently, the closed subsets of X
satisfy the descending chain condition.

Proposition 2.3 (Exercise 6.5). Let X be a Noetherian topological space. Then

1. Every subspace of X is Noetherian.

2. X is quasi-compact (every open cover has a finite subcover).

3. Every subspace of X is quasi-compact.

Proof. (1) Let A ⊂ X be a subset, endowed with the subspace topology, and let

U1 ⊂ U2 ⊂ U3 ⊂ · · ·

be an ascending chain of open subsets of A. By definition of the subspace topology, Ui =
A ∩ Vi for some open subsets Vi ⊂ X. Define

V ′n =
n⋃
i=1

Vi

Then
V ′1 ⊂ V ′2 ⊂ V ′3 ⊂ · · ·

is an ascending chain of open subsets of X, so by the Noetherian property it stabilizes, so
for some n, we have

n⋃
i=1

Vi =
n+1⋃
i=1

Vi equivalently, Vn+1 ⊂
n⋃
i=1

Vi
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From this, we get

Un+1 = Vn+1 ∩ A ⊂

(
n⋃
i=1

Vi

)
∩ A =

n⋃
i=1

(Vi ∩ A) =
n⋃
i=1

Ui = Un

with the last equality following from the original chain. Thus Un+1 ⊂ Un, and since the
other inclusion comes from the chain, Un+1 = Un, and the chain of open sets in A stabilizes.
Hence A is Noetherian.

(2) We prove the contrapositive, namely, that if X is not quasi-compact, then it is not
Noetherian. If X is not quasi-compact, there is an open cover U = {Uα}α∈I which has no
finite subcover. We will construct a non-stabilizing sequence of open subsets

V1 ⊂ V2 ⊂ V3 ⊂ · · ·

Choose some V1 = Uα1 ∈ U arbitrarily. Since V1 6= X (since then it would be a finite
subcover), there exists x2 ∈ X \ V1, and since U is a cover, there exists Uα2 ∈ U with
x2 ∈ Uα2 . Then set V2 = V1 ∪ Uα2 . Note that x2 ∈ V2 \ V1, so V1 ( V2.

We define Vi+1 inductively via this process. At each step, choose xi+1 ∈ X \ Vi, then
choose Uαi+1

∈ U with xi+1 ∈ Uαi+1
, then set Vi+1 = Vi∪Uαi+1

. By construction Vi+1 is open,
and Vi ( Vi+1. At each stage, such xi+1 exists because if it did not, then

n⋃
i=1

Ui = X

would be a finite subcover of U . Thus we obtain a non-stabilizing sequence of open subsets,
so X is not Noetherian. Consequently, every Noetherian space is quasi-compact.

(3) Immediate consequence of (1) and (2).

Definition 2.2. A topological space X is irreducible if it cannot be written as a union
of two proper closed subsets (they need not be disjoint). An irreducible component
of a topological space is a maximal irreducible subset. (Note that the unlike connected
compoments, the irreducible components may overlap.)

Lemma 2.4 (for Exercise 6.7). The closure (in X) of an irreducible set A ⊂ X is irreducible.
Consequently, an irreducible component (of X) is closed (in X).

Proof. We prove the first statement first. Let A ⊂ X be irreducible, and let A be the closure
of A (in X). Suppose A is reducible, so

A = B ∪ C

with B,C proper closed subsets in the subspace topology on A. By definition of the subspace
topology, there are closed subsets B′, C ′ of X such that B = B′ ∩A,C = C ′ ∩A. Since B,C
are proper subsets of A, neither of B′, C ′ contains A.

If A ⊂ B′ then A ⊂ B
′

= B′, which is a contradiction, so A 6⊂ B′. Similarly, A 6⊂ C ′.
Thus

A = (B′ ∩ A) ∪ (C ′ ∩ A)

5



is a decomposition of A into a union of two proper closed subset (closed in the subspace
topology on A), which contradicts A being irreducible. Thus A is irreducible.

For the second statement, suppose A is an irreducible component. By the above, A is
also irreducible, and of course A ⊂ A, so by maximality of A we have A = A, hence A is
closed.

Proposition 2.5 (Exercise 6.7). Let X be a Noetherian topological space. Then X is a finite
union of irreducible closed subspaces. Consequently, the set of irreducible components of a
Noetherian space is finite.

Proof. Consider

Σ = {A ⊂ X is closed : A is not a finite union of irreducible closed subspaces}

We claim that Σ is empty. Suppose A ∈ Σ. Then A is not irreducible, so it can be written
as A = A1∪A2, where A1, A2 are closed proper subsets. At least one of them must belong to
Σ, since if A1, A2 are both finite unions of irreducible closed subspaces, and then A is also.

Applying this again to A1 ∈ Σ, we obtain a proper subset of A1 which belongs to Σ.
Applying this process inductively, we obtain a descending chain of proper inclusions of closed
subsets of X which never terminates. Since X is Noetherian, this is impossible, so Σ must
be empty. In particular, X is not in Σ, so X is a finite union of irreducible closed subspaces.
So we write X as

X =
n⋃
i=1

Ai

with Ai irreducible and closed. Then each Ai is contained in some maximal irreducible subset
Bi. (Note that Bi may not be unique, and even if all the Ai are distinct, some of the Bi may
be the same.) Then

X =
n⋃
i=1

Bi

We claim that the collection {Bi} must contain all maximal irreducible subsets. Suppose
not, so there is a maximal irreducible subset C ⊂ X which is not equal to any Bi. Then we
can write C as

C =
n⋃
i=1

(Bi ∩ C)

By Lemma 2.4, Bi, C are closed (in X), so Bi∩C is closed (in X), and since Bi 6= C for any
i, Bi ∩C 6= C. Thus we have written C as a union of proper closed subsets, contradicting C
being irreducible.

Proposition 2.6 (Exercise 6.8). Let A be a ring. Then specA is a Noetherian topological
space if and only if the ascending chain condition holds for the set of radical ideals of A. In
particular, if A is Noetherian (as a ring), then specA is Noetherian (as a topological space).

Proof. Recall that there is an inclusion reversing bijection

V : {radical ideals of A} ↔ {closed subsets of specA} V (I) = {p ∈ specA : I ⊂ p}
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This induces a “stabilization-preserving” bijection between ascending chains of radical ideals
of A and descending chains of closed subsets of specA.

I1 ⊂ I2 ⊂ I3 ⊂ · · · ←→ V (I1) ⊃ V (I2) ⊃ V (I3) ⊃ · · ·

Thus radical ideals of A satisfy the ascending chain condition if and only if specA is Noethe-
rian.

3 Chapter 8

Lemma 3.1 (for Exercise 8.2). A discrete Noetherian topological space X is finite.

Proof. Choose distinct points x1, x2, . . . ∈ X. Then we have an ascending chain of open
subsets

{x1} ⊂ {x1, x2} ⊂ · · ·

which stabilizes by the Noetherian property. Thus

{x1, . . . , xn} = {x1, . . . , xN}

for any N ∈ N, which is to say, X has only finitely many points.

Definition 3.1. Let A be a ring and a ∈ A. We define Xa = {p ∈ specA : a 6∈ p}. Note
that the sets Xa form a basis of open sets for the Zariski topology on specA.

Lemma 3.2 (for Exercise 8.2). Let A be a ring and let q ∈ specA. Then {q} ⊂ specA is
closed if and only if q is a maximal ideal.

Proof. Let q be a maximal ideal. Then

V (q) = {p ∈ specA : q ⊂ p} = {q}

is closed. Conversely, suppose {q} is closed, and let m be a maximal ideal containing q. Since
{q} is closed and m ∈ specA \ {q}, there is a basis element Xa with m ∈ Xa and q 6∈ Xa.
Then a ∈ q \m, which contradicts q ⊂ m. Thus q is maximal.

Proposition 3.3 (Exercise 8.2). Let A be a Noetherian ring. The following are equivalent.

1. A is Artinian.

2. specA is discrete and finite.

3. specA is discrete.

Proof. (3) =⇒ (2) Since A is Noetherian, specA is Noetherian by Proposition 2.6, and
then this follows from Lemma 3.1.

(2) =⇒ (1) Since specA is discrete, every singleton set is closed, so every prime ideal
of A is maximal by Lemma 3.2. That is, dimA = 0. Then since A is also Noetherian, by
Theorem 8.5 of Atiyah-MacDonald, A is Artinian.
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(1) =⇒ (3) Since A is Artinian, every prime ideal is maximal by Proposition 8.1 of
Atiyah-MacDonald, so by Lemma 3.2, every singleton set of specA is closed. By Proposition
8.3 of Atiyah-MacDonald, specA has only finitely many points. Then every singleton set
is also open, since it can be written as a finite intersection of open sets. Thus specA is
discrete.

Remark 3.4. Let k be a field, and let A be a (unital) k-algebra. Then there is a natural
embedding k ↪→ A, x 7→ 1x. Let M be an A-module. Then M has a natural structure of a
k-module (aka k-vector space) by restricting the action of A to the image of k in A.

Proposition 3.5 (Exercise 8.3). Let K be a field and let A be a finitely generated K-algebra.
The following are equivalent.

1. A is Artinian.

2. A is finitely generated as a K-module.

Proof. (2) =⇒ (1) In this case, A is a finite dimensional K-vector space, so ideals are
vector subspaces. Then a descending chain of ideals eventually stabilizes, since the dimension
cannot decrease forever. Thus A is Artinian.

(1) =⇒ (2) By Theorem 8.7 of Atiyah-MacDonald (every Artinian ring is a finite direct
sum of local Artinian rings), it suffices to prove this in the case where A is local, so we
assume A is local with maximal ideal m. Let k = A/m be the residue field. By Proposition
8.6 of Atiyah-MacDonald, we have the following descending chain of ideal of A.

A ⊃ m ⊃ m2 ⊃ · · · ⊃ mn−1 ⊃ mn = 0

Each quotient mi/mi+1 is a k-vector space. Since A is Noetherian, mi is a finitely generated
A-module, so mi/mi+1 is finite dimensional over k. By Corollary 7.10 of Atiyah-MacDonald,
k is a finite extension of K, so we can view mi/mi+1 as a K-vector space, of dimension

dimK mi/mi+1 = (dimK k)
(
dimkm

i/mi+1
)
<∞

Viewing the chain above as a chain of K-vector spaces, we showed that each successive
quotient is finite dimensional, so all the terms must be finite dimensional. Thus A is a finite
dimensional K-vector space, that is, A is finitely generated as an A-module.

4 Chapter 10

Proposition 4.1 (Exercise 10.4). Let A be a Noetherian ring, and let a ⊂ A be an ideal.

Let Â be the a-adic completion. Let A→ Â, x 7→ x̂ be the canonical homomorphism. If x is
not a zero divisor in A, then x̂ is not a zero divisor in Â.

Proof. Suppose x ∈ A is not a zero divisior. Then the following sequence is exact.

0 A Ax
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Since the inverse limit functor is exact in this case (Proposition 10.12 of Atiyah-MacDonald),
the sequence

0 Â Âx̂

is exact. Thus x̂ is not a zero divisor.

Remark 4.2. As an immediate corollary of the previous proposition, if A is a Noetherian
domain, then the image of A in Â is an integral domain. However, A→ Â is rarely surjective,
so this does not imply that Â is a domain. In fact, there are counterexamples where the
completion of a domain has zero divisors.

Proposition 4.3 (Exercise 10.9, Hensel’s Lemma). Let (A,m) be a local ring with residue

field k = A/m, and suppose A is m-adically complete. For f ∈ A[x], let f̃ ∈ k[x] denote the

reduction mod m. If f ∈ A[x] is monic and there exist coprime monic polynomials g̃, h̃ ∈ k[x]

so that f̃ = g̃h̃, then there exist lifts g, h ∈ A[x] so that f = gh.

Proof. Proof omitted.

Lemma 4.4. The lifts g, h ∈ A[x] obtained in Hensel’s lemma have leading coefficient which

is a unit, and satisfy deg g = deg g̃ and deg h = deg h̃.

Proof. Since f = gh is monic, the leading coefficients of g, h must be units of A, so they lie
outside m. That is, the highest degree terms survive (are nonzero) after reduction mod m,
so g cannot have higher degree terms that g, hence deg g ≤ deg g̃. Of course, reducing mod
m cannot add higher degree terms, so deg g = deg g̃. Same goes for h.

Proposition 4.5 (Exercise 10.10). Let (A,m) be a local ring with residue field k = A/m,

and suppose A is m-adically complete. For f ∈ A[x], let f̃ ∈ k[x] denote the reduction mod
m. Let f ∈ A[x] be monic.

1. If f̃ has a simple root α ∈ k, then f has a simple root a ∈ A such that α = a ∈ k.
(Where a = a mod m).

2. 2 is a square in the ring of 7-adic integers.

3. Let K be a field, and let f ∈ K[x, y]. There exists a formal power series

y(x) =
∞∑
n=0

anx
n

with ai ∈ K, such that f
(
x, y(x)

)
= 0. (We interpret this as an “analytic branch” of

the curve f(x, y) = 0 through the point (0, a0).)

Proof. (1) Suppose α is a simple root of f̂ ∈ k[x], so we have a factorization of f̃(x) as

f̃(x) = g̃(x)h̃(x) = (x− α)h̃(x)
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for some h̃(x) ∈ k[x] which is coprime to g̃(x) = (x − α). By Hensel’s Lemma, this factor-
ization lifts to

f(x) = g(x)h(x)

for some g, h ∈ A[x]. By Lemma 4.4, g is linear with leading coefficient a unit, so we may
write it as

g(x) = ux− b

for some u, b ∈ A, with u a unit. Set a = u−1b, then

g(a) = u(u−1b)− b = 0

Let a = a mod m ∈ A/m. Reducing the previous equation mod m gives g̃(a) = 0, thus

g̃(a) = a− α = 0 ∈ k

so α = a ∈ k.
(2) and (3) I don’t know how to prove these.

5 Chapter 11

Definition 5.1. Let k be an algebraically closed field, and let f ∈ k[x1, . . . , xn]. A point P
on the variety f(x) = 0 is nonsingular if not all the partial derivatives ∂f

∂xi
vanish at P .

Proposition 5.1 (Exercise 11.1). Let k be an algebraically closed field, and let f ∈ k[x1, . . . , xn].
Let P = (a1, . . . , an) ∈ An

k such that f(P ) = 0. Let A = k[x1, . . . , xn]/(f), and let m ⊂ A be
the maximal ideal (x1 − a1, . . . , xn − an) corresponding to P . Then P is nonsingular if and
only if Am is a regular local ring.

Proof. I don’t know how to prove this.

Lemma 5.2 (for Exercise 11.4). Let k be a field and let A = k[x1, x2, x3, . . .] be the polynomial
ring in countably many variables. For any integers m1, . . . ,mn, then ideal

p = (xm1 , . . . , xmn)

is prime.

Proof. Consider the ring homomorphism

A→ k[xm1 , . . . , xmn ]

which sends variables xi for i 6∈ {m1, . . . ,mn} to 1. By Nullstellensatz,

p′ = (xm1 , . . . , xmn) ⊂ k[xm1 , . . . , xmn ]

is maximal, hence prime. The preimage in A is p, so p is prime.
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Proposition 5.3 (Exercise 11.4, example of Noetherian domain of infinite Krull dimension).
Let k be a field and let A = k[x1, x2, . . .] be the polynomial ring in countably many variables.
Let m1,m2, . . . be an increasing sequence of positive integers such that

mi+1 −mi > mi −mi−1 ∀i ≥ 2

Let
pi = (xmi+1, . . . , xmi+1

) ∀i ≥ 1

and let

S = A \
∞⋃
i=1

pi

Then

1. Any ideal of A generated by a finite set of variables
{
xij : 1 ≤ j ≤ n

}
is prime. In

particular, each pi is prime.

2. For any ring, the complement of union of prime ideals is a multiplicative subset. In
particular, S is multiplicative.

3. S−1A is Noetherian.

4. S−1pi has height at least mi+1 −mi.

5. dimS−1A =∞.

Proof. First, we just write down a more understandable formulation of the hypotheses. We
have a sequence of integers

m1 < m1 + 1 < m1 + 2 < · · · < m2 < m2 + 1 < m2 + 2 < · · · < m3 < · · ·

The condition mi+1 − mi > mi − mi−1 says that the size of the gaps are increasing. The
ideals pi are generated by variables with indices from a subsequence of this, and no two
pi have overlapping generators, the only variables not used as generators of some pi are
x1, x2, . . . , xm1 .

(1) Consider the ring homomorphism

A→ k[xi1 , . . . , xin ]

which sends variables x` for ` 6∈
{
xij
}

to 1. By Hilbert’s Nullstellensatz,

p′ = (xi1 , . . . , xin) ⊂ k[xi1 , . . . , xin ]

is maximal, hence prime. The preimage in A is p, so p is prime.
(2) Let R be any ring with prime ideals pi for i ∈ I (we make no assumptions about the

cardinality of I) and let

S = R \
⋃
i∈I

pi
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Let x, y ∈ S. If xy 6∈ S, then xy ∈ pi for some prime pi, so by primality one of x, y ∈ pi.
But this contradicts x, y ∈ S, so we conclude xy ∈ S.

(3) I don’t know how to prove this.
(4) The the following prime ideal chain in A has length mi+1 −mi.

(xmi+1
) ⊂ (xmi+1

, xmi+2
) ⊂ · · · ⊂ pi

After localization, this remains a chain of prime ideals of the same height, so the height of
S−1pi is bounded below by mi+1 −mi.

(5) Recall that dimS−1A is the supremum of lengths of chains of prime ideals. By (4),
S−1A has a prime of height at least mi+1 − mi for any i ≥ 1. Because of the hypothesis
mi+1 − mi > mi − mi−1, these heights get arbitrarily large, so S−1A has prime chains of
arbitrarily long length. Thus dimS−1A =∞.
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